MakeItFrom.com
Menu (ESC)

3102 Aluminum vs. 2218 Aluminum

Both 3102 aluminum and 2218 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3102 aluminum and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 23 to 28
6.8 to 10
Fatigue Strength, MPa 31 to 34
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 58 to 65
210 to 250
Tensile Strength: Ultimate (UTS), MPa 92 to 100
330 to 430
Tensile Strength: Yield (Proof), MPa 28 to 34
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 640
510
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 230
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
37
Electrical Conductivity: Equal Weight (Specific), % IACS 190
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
11
Density, g/cm3 2.7
3.1
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 5.8 to 8.3
450 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
45
Strength to Weight: Axial, points 9.4 to 10
30 to 39
Strength to Weight: Bending, points 17 to 18
34 to 41
Thermal Diffusivity, mm2/s 92
52
Thermal Shock Resistance, points 4.1 to 4.4
15 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.9 to 99.95
88.8 to 93.6
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
3.5 to 4.5
Iron (Fe), % 0 to 0.7
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0.050 to 0.4
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 0 to 0.4
0 to 0.9
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.3
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15