MakeItFrom.com
Menu (ESC)

3102 Aluminum vs. 5657 Aluminum

Both 3102 aluminum and 5657 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3102 aluminum and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 23 to 28
6.6 to 15
Fatigue Strength, MPa 31 to 34
74 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 58 to 65
92 to 110
Tensile Strength: Ultimate (UTS), MPa 92 to 100
150 to 200
Tensile Strength: Yield (Proof), MPa 28 to 34
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 640
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
210
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
54
Electrical Conductivity: Equal Weight (Specific), % IACS 190
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1190
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 5.8 to 8.3
140 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 9.4 to 10
15 to 20
Strength to Weight: Bending, points 17 to 18
23 to 28
Thermal Diffusivity, mm2/s 92
84
Thermal Shock Resistance, points 4.1 to 4.4
6.7 to 8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.9 to 99.95
98.5 to 99.4
Copper (Cu), % 0 to 0.1
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.7
0 to 0.1
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0.050 to 0.4
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.080
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.3
0 to 0.050
Residuals, % 0 to 0.15
0 to 0.050