MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. 1230A Aluminum

Both 3103 aluminum and 1230A aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is 1230A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 1.1 to 28
4.5 to 34
Fatigue Strength, MPa 38 to 83
35 to 74
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 68 to 130
59 to 99
Tensile Strength: Ultimate (UTS), MPa 100 to 220
89 to 170
Tensile Strength: Yield (Proof), MPa 39 to 200
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 640
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
230
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
60
Electrical Conductivity: Equal Weight (Specific), % IACS 140
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
5.9 to 150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 10 to 22
9.1 to 17
Strength to Weight: Bending, points 18 to 30
16 to 25
Thermal Diffusivity, mm2/s 64
93
Thermal Shock Resistance, points 4.6 to 9.9
4.0 to 7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.3 to 99.1
99.3 to 100
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 0 to 0.3
0 to 0.050
Manganese (Mn), % 0.9 to 1.5
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.7
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0 to 0.050
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants