MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. 3203 Aluminum

Both 3103 aluminum and 3203 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is 3203 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 1.1 to 28
4.5 to 29
Fatigue Strength, MPa 38 to 83
46 to 92
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 68 to 130
72 to 120
Tensile Strength: Ultimate (UTS), MPa 100 to 220
110 to 200
Tensile Strength: Yield (Proof), MPa 39 to 200
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 660
650
Melting Onset (Solidus), °C 640
620
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
43
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 8.2
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
8.0 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
11 to 250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 10 to 22
11 to 20
Strength to Weight: Bending, points 18 to 30
19 to 28
Thermal Diffusivity, mm2/s 64
70
Thermal Shock Resistance, points 4.6 to 9.9
4.9 to 8.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.3 to 99.1
96.9 to 99
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
1.0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.6
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants