MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. EN-MC65220 Magnesium

3103 aluminum belongs to the aluminum alloys classification, while EN-MC65220 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is EN-MC65220 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
80
Elastic (Young's, Tensile) Modulus, GPa 70
44
Elongation at Break, % 1.1 to 28
2.2
Fatigue Strength, MPa 38 to 83
110
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
17
Shear Strength, MPa 68 to 130
150
Tensile Strength: Ultimate (UTS), MPa 100 to 220
270
Tensile Strength: Yield (Proof), MPa 39 to 200
200

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 660
610
Melting Onset (Solidus), °C 640
550
Specific Heat Capacity, J/kg-K 900
980
Thermal Conductivity, W/m-K 160
110
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
25
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.8
1.9
Embodied Carbon, kg CO2/kg material 8.2
27
Embodied Energy, MJ/kg 150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
5.5
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
62
Strength to Weight: Axial, points 10 to 22
40
Strength to Weight: Bending, points 18 to 30
49
Thermal Diffusivity, mm2/s 64
61
Thermal Shock Resistance, points 4.6 to 9.9
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.3 to 99.1
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0.050 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.010
Magnesium (Mg), % 0 to 0.3
93.8 to 96.8
Manganese (Mn), % 0.9 to 1.5
0 to 0.15
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.5
0 to 0.010
Silver (Ag), % 0
1.3 to 1.7
Titanium (Ti), % 0 to 0.1
0
Unspecified Rare Earths, % 0
1.5 to 3.0
Zinc (Zn), % 0 to 0.2
0 to 0.2
Zirconium (Zr), % 0 to 0.1
0.4 to 1.0
Residuals, % 0 to 0.15
0 to 0.010