MakeItFrom.com
Menu (ESC)

3105 Aluminum vs. S32615 Stainless Steel

3105 aluminum belongs to the aluminum alloys classification, while S32615 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3105 aluminum and the bottom bar is S32615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 67
170
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.1 to 20
28
Fatigue Strength, MPa 39 to 95
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 77 to 140
400
Tensile Strength: Ultimate (UTS), MPa 120 to 240
620
Tensile Strength: Yield (Proof), MPa 46 to 220
250

Thermal Properties

Latent Heat of Fusion, J/g 400
370
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 660
1350
Melting Onset (Solidus), °C 640
1310
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 8.2
4.4
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 19
140
Resilience: Unit (Modulus of Resilience), kJ/m3 15 to 340
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 12 to 24
23
Strength to Weight: Bending, points 20 to 31
21
Thermal Shock Resistance, points 5.2 to 11
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96 to 99.5
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.2
16.5 to 19.5
Copper (Cu), % 0 to 0.3
1.5 to 2.5
Iron (Fe), % 0 to 0.7
46.4 to 57.9
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
0.3 to 1.5
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.6
4.8 to 6.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.4
0
Residuals, % 0 to 0.15
0