MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. EN 1.0473 Steel

319.0 aluminum belongs to the aluminum alloys classification, while EN 1.0473 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is EN 1.0473 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78 to 84
160
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.8 to 2.0
22
Fatigue Strength, MPa 76 to 80
250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170 to 210
360
Tensile Strength: Ultimate (UTS), MPa 190 to 240
570
Tensile Strength: Yield (Proof), MPa 110 to 180
360

Thermal Properties

Latent Heat of Fusion, J/g 480
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
52
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 84
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.2
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 1080
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 18 to 24
20
Strength to Weight: Bending, points 25 to 30
19
Thermal Diffusivity, mm2/s 44
14
Thermal Shock Resistance, points 8.6 to 11
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 91.5
0.020 to 0.024
Carbon (C), % 0
0.1 to 0.22
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.0
96.3 to 98.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.35
0 to 0.3
Niobium (Nb), % 0
0 to 0.040
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 5.5 to 6.5
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.030
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0