MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. N08330 Stainless Steel

319.0 aluminum belongs to the aluminum alloys classification, while N08330 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is N08330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78 to 84
180
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.8 to 2.0
34
Fatigue Strength, MPa 76 to 80
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 170 to 210
360
Tensile Strength: Ultimate (UTS), MPa 190 to 240
550
Tensile Strength: Yield (Proof), MPa 110 to 180
230

Thermal Properties

Latent Heat of Fusion, J/g 480
310
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 600
1390
Melting Onset (Solidus), °C 540
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 84
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.7
5.4
Embodied Energy, MJ/kg 140
77
Embodied Water, L/kg 1080
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
150
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 18 to 24
19
Strength to Weight: Bending, points 25 to 30
18
Thermal Diffusivity, mm2/s 44
3.1
Thermal Shock Resistance, points 8.6 to 11
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 3.0 to 4.0
0 to 1.0
Iron (Fe), % 0 to 1.0
38.3 to 48.3
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.35
34 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 5.5 to 6.5
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0