MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. 8090 Aluminum

Both 324.0 aluminum and 8090 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 3.0 to 4.0
3.5 to 13
Fatigue Strength, MPa 77 to 89
91 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 210 to 310
340 to 490
Tensile Strength: Yield (Proof), MPa 110 to 270
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
660
Melting Onset (Solidus), °C 550
600
Specific Heat Capacity, J/kg-K 900
960
Thermal Conductivity, W/m-K 150
95 to 160
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
20
Electrical Conductivity: Equal Weight (Specific), % IACS 120
66

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.6
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1090
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
340 to 1330
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 22 to 32
34 to 49
Strength to Weight: Bending, points 29 to 38
39 to 50
Thermal Diffusivity, mm2/s 62
36 to 60
Thermal Shock Resistance, points 9.7 to 14
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 92.2
93 to 98.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0.4 to 0.6
1.0 to 1.6
Iron (Fe), % 0 to 1.2
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0.4 to 0.7
0.6 to 1.3
Manganese (Mn), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 7.0 to 8.0
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 1.0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0 to 0.2
0 to 0.15