MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. AISI 201L Stainless Steel

324.0 aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.0 to 4.0
22 to 46
Fatigue Strength, MPa 77 to 89
270 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 210 to 310
740 to 1040
Tensile Strength: Yield (Proof), MPa 110 to 270
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 610
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 7.9
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1090
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
220 to 1570
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 22 to 32
27 to 37
Strength to Weight: Bending, points 29 to 38
24 to 30
Thermal Diffusivity, mm2/s 62
4.0
Thermal Shock Resistance, points 9.7 to 14
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 92.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0.4 to 0.6
0
Iron (Fe), % 0 to 1.2
67.9 to 75
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
5.5 to 7.5
Nickel (Ni), % 0 to 0.3
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 7.0 to 8.0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.2
0