MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. C40500 Penny Bronze

324.0 aluminum belongs to the aluminum alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 3.0 to 4.0
3.0 to 49
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 210 to 310
270 to 540
Tensile Strength: Yield (Proof), MPa 110 to 270
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 500
200
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
1060
Melting Onset (Solidus), °C 550
1020
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
41
Electrical Conductivity: Equal Weight (Specific), % IACS 120
42

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1090
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
28 to 1200
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 22 to 32
8.5 to 17
Strength to Weight: Bending, points 29 to 38
10 to 17
Thermal Diffusivity, mm2/s 62
48
Thermal Shock Resistance, points 9.7 to 14
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 92.2
0
Copper (Cu), % 0.4 to 0.6
94 to 96
Iron (Fe), % 0 to 1.2
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 7.0 to 8.0
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
2.1 to 5.3
Residuals, % 0 to 0.2
0 to 0.5