MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. S28200 Stainless Steel

324.0 aluminum belongs to the aluminum alloys classification, while S28200 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is S28200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.0 to 4.0
45
Fatigue Strength, MPa 77 to 89
430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 210 to 310
870
Tensile Strength: Yield (Proof), MPa 110 to 270
460

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 610
1380
Melting Onset (Solidus), °C 550
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 21
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 7.9
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1090
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
330
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
540
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
26
Strength to Weight: Axial, points 22 to 32
32
Strength to Weight: Bending, points 29 to 38
27
Thermal Shock Resistance, points 9.7 to 14
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 92.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0.4 to 0.6
0.75 to 1.3
Iron (Fe), % 0 to 1.2
57.7 to 64.1
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
17 to 19
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 7.0 to 8.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.2
0