MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. EN 1.7367 Steel

328.0 aluminum belongs to the aluminum alloys classification, while EN 1.7367 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is EN 1.7367 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
200
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 2.1
18
Fatigue Strength, MPa 55 to 80
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 200 to 270
670
Tensile Strength: Yield (Proof), MPa 120 to 170
460

Thermal Properties

Latent Heat of Fusion, J/g 510
270
Maximum Temperature: Mechanical, °C 180
600
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1070
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
110
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
560
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 21 to 28
24
Strength to Weight: Bending, points 28 to 34
22
Thermal Diffusivity, mm2/s 50
6.9
Thermal Shock Resistance, points 9.2 to 12
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.5 to 91.1
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0 to 0.35
8.0 to 9.5
Copper (Cu), % 1.0 to 2.0
0
Iron (Fe), % 0 to 1.0
87.3 to 90.3
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0 to 0.25
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 8.5
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 1.5
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0