MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. C72800 Copper-nickel

328.0 aluminum belongs to the aluminum alloys classification, while C72800 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 1.6 to 2.1
3.9 to 23
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Tensile Strength: Ultimate (UTS), MPa 200 to 270
520 to 1270
Tensile Strength: Yield (Proof), MPa 120 to 170
250 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 510
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 620
1080
Melting Onset (Solidus), °C 560
920
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 120
55
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
11
Electrical Conductivity: Equal Weight (Specific), % IACS 99
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
38
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 7.8
4.4
Embodied Energy, MJ/kg 140
68
Embodied Water, L/kg 1070
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
37 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
260 to 5650
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 21 to 28
17 to 40
Strength to Weight: Bending, points 28 to 34
16 to 30
Thermal Diffusivity, mm2/s 50
17
Thermal Shock Resistance, points 9.2 to 12
19 to 45

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.5 to 91.1
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Chromium (Cr), % 0 to 0.35
0
Copper (Cu), % 1.0 to 2.0
78.3 to 82.8
Iron (Fe), % 0 to 1.0
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0.2 to 0.6
0.0050 to 0.15
Manganese (Mn), % 0.2 to 0.6
0.050 to 0.3
Nickel (Ni), % 0 to 0.25
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 7.5 to 8.5
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.25
0 to 0.010
Zinc (Zn), % 0 to 1.5
0 to 1.0
Residuals, % 0 to 0.5
0 to 0.3