MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. S42300 Stainless Steel

328.0 aluminum belongs to the aluminum alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
330
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.6 to 2.1
9.1
Fatigue Strength, MPa 55 to 80
440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 200 to 270
1100
Tensile Strength: Yield (Proof), MPa 120 to 170
850

Thermal Properties

Latent Heat of Fusion, J/g 510
270
Maximum Temperature: Mechanical, °C 180
750
Melting Completion (Liquidus), °C 620
1470
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
3.2
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 1070
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
93
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
1840
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 21 to 28
39
Strength to Weight: Bending, points 28 to 34
30
Thermal Diffusivity, mm2/s 50
6.8
Thermal Shock Resistance, points 9.2 to 12
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.5 to 91.1
0
Carbon (C), % 0
0.27 to 0.32
Chromium (Cr), % 0 to 0.35
11 to 12
Copper (Cu), % 1.0 to 2.0
0
Iron (Fe), % 0 to 1.0
82 to 85.1
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 0.25
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 8.5
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0