MakeItFrom.com
Menu (ESC)

3303 Aluminum vs. Sintered 2014 Aluminum

Both 3303 aluminum and sintered 2014 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3303 aluminum and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 23
0.5 to 3.0
Fatigue Strength, MPa 43
52 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 110
140 to 290
Tensile Strength: Yield (Proof), MPa 39
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 620
560
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 170
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
33
Electrical Conductivity: Equal Weight (Specific), % IACS 140
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.8
2.9
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 11
68 to 560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
47
Strength to Weight: Axial, points 11
13 to 27
Strength to Weight: Bending, points 18
20 to 33
Thermal Diffusivity, mm2/s 67
51
Thermal Shock Resistance, points 4.8
6.2 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.6 to 99
91.5 to 96.3
Copper (Cu), % 0.050 to 0.2
3.5 to 5.0
Iron (Fe), % 0 to 0.7
0
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 1.0 to 1.5
0
Silicon (Si), % 0 to 0.6
0 to 1.2
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0 to 1.5