MakeItFrom.com
Menu (ESC)

3303 Aluminum vs. N10003 Nickel

3303 aluminum belongs to the aluminum alloys classification, while N10003 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3303 aluminum and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 23
42
Fatigue Strength, MPa 43
260
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
80
Shear Strength, MPa 69
540
Tensile Strength: Ultimate (UTS), MPa 110
780
Tensile Strength: Yield (Proof), MPa 39
320

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
930
Melting Completion (Liquidus), °C 650
1520
Melting Onset (Solidus), °C 620
1460
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 170
12
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.1
13
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
260
Resilience: Unit (Modulus of Resilience), kJ/m3 11
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
22
Strength to Weight: Axial, points 11
24
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 67
3.1
Thermal Shock Resistance, points 4.8
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.6 to 99
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0.050 to 0.2
0 to 0.35
Iron (Fe), % 0 to 0.7
0 to 5.0
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0
64.8 to 79
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0