MakeItFrom.com
Menu (ESC)

3303 Aluminum vs. S30615 Stainless Steel

3303 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3303 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 23
39
Fatigue Strength, MPa 43
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 69
470
Tensile Strength: Ultimate (UTS), MPa 110
690
Tensile Strength: Yield (Proof), MPa 39
310

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 620
1320
Specific Heat Capacity, J/kg-K 900
500
Thermal Conductivity, W/m-K 170
14
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 8.1
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
220
Resilience: Unit (Modulus of Resilience), kJ/m3 11
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 11
25
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 67
3.7
Thermal Shock Resistance, points 4.8
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.6 to 99
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 0.7
56.7 to 65.3
Manganese (Mn), % 1.0 to 1.5
0 to 2.0
Nickel (Ni), % 0
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.6
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0