MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. 6151 Aluminum

Both 332.0 aluminum and 6151 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is 6151 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 1.0
1.1 to 5.7
Fatigue Strength, MPa 90
80 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 190
190 to 200
Tensile Strength: Ultimate (UTS), MPa 250
330 to 340
Tensile Strength: Yield (Proof), MPa 190
270 to 280

Thermal Properties

Latent Heat of Fusion, J/g 530
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
650
Melting Onset (Solidus), °C 530
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 100
170
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
45
Electrical Conductivity: Equal Weight (Specific), % IACS 84
150

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
3.5 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 250
520 to 580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 24
34
Strength to Weight: Bending, points 31
39
Thermal Diffusivity, mm2/s 42
70
Thermal Shock Resistance, points 12
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.1 to 89
95.6 to 98.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 2.0 to 4.0
0 to 0.35
Iron (Fe), % 0 to 1.2
0 to 1.0
Magnesium (Mg), % 0.5 to 1.5
0.45 to 0.8
Manganese (Mn), % 0 to 0.5
0 to 0.2
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 8.5 to 10.5
0.6 to 1.2
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0 to 1.0
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.15