MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. Grade 19 Titanium

336.0 aluminum belongs to the aluminum alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
120
Elongation at Break, % 0.5
5.6 to 17
Fatigue Strength, MPa 80 to 93
550 to 620
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
47
Shear Strength, MPa 190 to 250
550 to 750
Tensile Strength: Ultimate (UTS), MPa 250 to 320
890 to 1300
Tensile Strength: Yield (Proof), MPa 190 to 300
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 210
370
Melting Completion (Liquidus), °C 570
1660
Melting Onset (Solidus), °C 540
1600
Specific Heat Capacity, J/kg-K 890
520
Thermal Conductivity, W/m-K 120
6.2
Thermal Expansion, µm/m-K 19
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
45
Density, g/cm3 2.8
5.0
Embodied Carbon, kg CO2/kg material 7.9
47
Embodied Energy, MJ/kg 140
760
Embodied Water, L/kg 1010
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
3040 to 5530
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
33
Strength to Weight: Axial, points 25 to 32
49 to 72
Strength to Weight: Bending, points 32 to 38
41 to 53
Thermal Diffusivity, mm2/s 48
2.4
Thermal Shock Resistance, points 12 to 16
57 to 83

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 79.1 to 85.8
3.0 to 4.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Copper (Cu), % 0.5 to 1.5
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 1.2
0 to 0.3
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 2.0 to 3.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Silicon (Si), % 11 to 13
0
Titanium (Ti), % 0 to 0.25
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zinc (Zn), % 0 to 0.35
0
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants