MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. N06110 Nickel

336.0 aluminum belongs to the aluminum alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
210
Elongation at Break, % 0.5
53
Fatigue Strength, MPa 80 to 93
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
84
Shear Strength, MPa 190 to 250
530
Tensile Strength: Ultimate (UTS), MPa 250 to 320
730
Tensile Strength: Yield (Proof), MPa 190 to 300
330

Thermal Properties

Latent Heat of Fusion, J/g 570
340
Maximum Temperature: Mechanical, °C 210
1020
Melting Completion (Liquidus), °C 570
1490
Melting Onset (Solidus), °C 540
1440
Specific Heat Capacity, J/kg-K 890
440
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
65
Density, g/cm3 2.8
8.6
Embodied Carbon, kg CO2/kg material 7.9
11
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1010
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
320
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 25 to 32
23
Strength to Weight: Bending, points 32 to 38
21
Thermal Shock Resistance, points 12 to 16
20

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0 to 1.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 33
Copper (Cu), % 0.5 to 1.5
0 to 0.5
Iron (Fe), % 0 to 1.2
0 to 1.0
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 2.0 to 3.0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0
Zinc (Zn), % 0 to 0.35
0