MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. 5051A Aluminum

Both 354.0 aluminum and 5051A aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is 5051A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 2.4 to 3.0
18 to 21
Fatigue Strength, MPa 92 to 120
51 to 61
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 360 to 380
170
Tensile Strength: Yield (Proof), MPa 280 to 310
56

Thermal Properties

Latent Heat of Fusion, J/g 530
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 550
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
39
Electrical Conductivity: Equal Weight (Specific), % IACS 110
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
24 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
23
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 37 to 39
17 to 18
Strength to Weight: Bending, points 42 to 44
25
Thermal Diffusivity, mm2/s 52
63
Thermal Shock Resistance, points 17 to 18
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 89.4
96.1 to 98.6
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 1.6 to 2.0
0 to 0.050
Iron (Fe), % 0 to 0.2
0 to 0.45
Magnesium (Mg), % 0.4 to 0.6
1.4 to 2.1
Manganese (Mn), % 0 to 0.1
0 to 0.25
Silicon (Si), % 8.6 to 9.4
0 to 0.3
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15