MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. 5082 Aluminum

Both 354.0 aluminum and 5082 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 2.4 to 3.0
1.1
Fatigue Strength, MPa 92 to 120
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 360 to 380
380 to 400
Tensile Strength: Yield (Proof), MPa 280 to 310
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 530
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 550
560
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
670 to 870
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
51
Strength to Weight: Axial, points 37 to 39
39 to 41
Strength to Weight: Bending, points 42 to 44
43 to 45
Thermal Diffusivity, mm2/s 52
54
Thermal Shock Resistance, points 17 to 18
17 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 89.4
93.5 to 96
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 1.6 to 2.0
0 to 0.15
Iron (Fe), % 0 to 0.2
0 to 0.35
Magnesium (Mg), % 0.4 to 0.6
4.0 to 5.0
Manganese (Mn), % 0 to 0.1
0 to 0.15
Silicon (Si), % 8.6 to 9.4
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15