MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. A357.0 Aluminum

Both 354.0 aluminum and A357.0 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 2.4 to 3.0
3.7
Fatigue Strength, MPa 92 to 120
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 360 to 380
350
Tensile Strength: Yield (Proof), MPa 280 to 310
270

Thermal Properties

Latent Heat of Fusion, J/g 530
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
610
Melting Onset (Solidus), °C 550
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
40
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
12
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
520
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
53
Strength to Weight: Axial, points 37 to 39
38
Strength to Weight: Bending, points 42 to 44
43
Thermal Diffusivity, mm2/s 52
68
Thermal Shock Resistance, points 17 to 18
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 89.4
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Copper (Cu), % 1.6 to 2.0
0 to 0.2
Iron (Fe), % 0 to 0.2
0 to 0.2
Magnesium (Mg), % 0.4 to 0.6
0.4 to 0.7
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 8.6 to 9.4
6.5 to 7.5
Titanium (Ti), % 0 to 0.2
0.040 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15