MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. AWS ERNiCrFe-11

354.0 aluminum belongs to the aluminum alloys classification, while AWS ERNiCrFe-11 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is AWS ERNiCrFe-11.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.4 to 3.0
47
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 360 to 380
740

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Melting Completion (Liquidus), °C 600
1360
Melting Onset (Solidus), °C 550
1310
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
49
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 7.8
8.0
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1070
280

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 37 to 39
25
Strength to Weight: Bending, points 42 to 44
22
Thermal Diffusivity, mm2/s 52
2.9
Thermal Shock Resistance, points 17 to 18
20

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
1.0 to 1.7
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 1.6 to 2.0
0 to 1.0
Iron (Fe), % 0 to 0.2
7.2 to 20
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
58 to 63
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.6 to 9.4
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0 to 0.5