MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. EN 2.4815 Cast Nickel

354.0 aluminum belongs to the aluminum alloys classification, while EN 2.4815 cast nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is EN 2.4815 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4 to 3.0
3.4
Fatigue Strength, MPa 92 to 120
89
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 360 to 380
460
Tensile Strength: Yield (Proof), MPa 280 to 310
220

Thermal Properties

Latent Heat of Fusion, J/g 530
330
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1510
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
47
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 7.8
7.9
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1070
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
13
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
130
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 37 to 39
15
Strength to Weight: Bending, points 42 to 44
16
Thermal Diffusivity, mm2/s 52
6.4
Thermal Shock Resistance, points 17 to 18
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 89.4
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0
12 to 18
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
9.8 to 28.7
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
58 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.6 to 9.4
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0