MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. EN AC-43000 Aluminum

Both 354.0 aluminum and EN AC-43000 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is EN AC-43000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 2.4 to 3.0
1.1 to 2.5
Fatigue Strength, MPa 92 to 120
68 to 76
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 360 to 380
180 to 270
Tensile Strength: Yield (Proof), MPa 280 to 310
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 530
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
600
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
38
Electrical Conductivity: Equal Weight (Specific), % IACS 110
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 7.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
66 to 360
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
54
Strength to Weight: Axial, points 37 to 39
20 to 29
Strength to Weight: Bending, points 42 to 44
28 to 36
Thermal Diffusivity, mm2/s 52
60
Thermal Shock Resistance, points 17 to 18
8.6 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 89.4
87 to 90.8
Copper (Cu), % 1.6 to 2.0
0 to 0.050
Iron (Fe), % 0 to 0.2
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.4 to 0.6
0.2 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.45
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 8.6 to 9.4
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15