MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. EN AC-46200 Aluminum

Both 354.0 aluminum and EN AC-46200 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 2.4 to 3.0
1.1
Fatigue Strength, MPa 92 to 120
87
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 360 to 380
210
Tensile Strength: Yield (Proof), MPa 280 to 310
130

Thermal Properties

Latent Heat of Fusion, J/g 530
510
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
620
Melting Onset (Solidus), °C 550
540
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 7.8
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1070
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 37 to 39
21
Strength to Weight: Bending, points 42 to 44
28
Thermal Diffusivity, mm2/s 52
44
Thermal Shock Resistance, points 17 to 18
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 89.4
82.6 to 90.3
Copper (Cu), % 1.6 to 2.0
2.0 to 3.5
Iron (Fe), % 0 to 0.2
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.4 to 0.6
0.050 to 0.55
Manganese (Mn), % 0 to 0.1
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 8.6 to 9.4
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 1.2
Residuals, % 0 to 0.15
0 to 0.25