MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. ACI-ASTM CF10SMnN Steel

355.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF10SMnN steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is ACI-ASTM CF10SMnN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 72 to 83
190
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.5 to 2.6
34
Fatigue Strength, MPa 55 to 70
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 200 to 260
660
Tensile Strength: Yield (Proof), MPa 150 to 190
330

Thermal Properties

Latent Heat of Fusion, J/g 470
340
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 620
1360
Melting Onset (Solidus), °C 560
1310
Specific Heat Capacity, J/kg-K 890
500
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.5
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1120
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
180
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
26
Strength to Weight: Axial, points 20 to 27
24
Strength to Weight: Bending, points 28 to 33
22
Thermal Shock Resistance, points 9.1 to 12
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.25
16 to 18
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.6
59.1 to 65.4
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
7.0 to 9.0
Nickel (Ni), % 0
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 4.5 to 5.5
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0