MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. EN 1.4107 Stainless Steel

355.0 aluminum belongs to the aluminum alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.5 to 2.6
18 to 21
Fatigue Strength, MPa 55 to 70
260 to 350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 200 to 260
620 to 700
Tensile Strength: Yield (Proof), MPa 150 to 190
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Maximum Temperature: Mechanical, °C 180
740
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150 to 170
27
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.1
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1120
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
420 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 27
22 to 25
Strength to Weight: Bending, points 28 to 33
21 to 22
Thermal Diffusivity, mm2/s 60 to 69
7.2
Thermal Shock Resistance, points 9.1 to 12
22 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.25
11.5 to 12.5
Copper (Cu), % 1.0 to 1.5
0 to 0.3
Iron (Fe), % 0 to 0.6
83.8 to 87.2
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0

Comparable Variants