MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. Grade N12MV Nickel

355.0 aluminum belongs to the aluminum alloys classification, while grade N12MV nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is grade N12MV nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 1.5 to 2.6
6.8
Fatigue Strength, MPa 55 to 70
130
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 200 to 260
600
Tensile Strength: Yield (Proof), MPa 150 to 190
310

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 620
1620
Melting Onset (Solidus), °C 560
1570
Specific Heat Capacity, J/kg-K 890
390
Thermal Expansion, µm/m-K 22
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
9.2
Embodied Carbon, kg CO2/kg material 8.0
16
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1120
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
34
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 20 to 27
18
Strength to Weight: Bending, points 28 to 33
17
Thermal Shock Resistance, points 9.1 to 12
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.25
0 to 1.0
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.6
4.0 to 6.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
60.2 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.2 to 0.6
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0