MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. Grade Ti-Pd18 Titanium

355.0 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 72 to 83
320
Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 1.5 to 2.6
17
Fatigue Strength, MPa 55 to 70
350
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 200 to 260
710
Tensile Strength: Yield (Proof), MPa 150 to 190
540

Thermal Properties

Latent Heat of Fusion, J/g 470
410
Maximum Temperature: Mechanical, °C 180
330
Melting Completion (Liquidus), °C 620
1640
Melting Onset (Solidus), °C 560
1590
Specific Heat Capacity, J/kg-K 890
550
Thermal Conductivity, W/m-K 150 to 170
8.2
Thermal Expansion, µm/m-K 22
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
2.7

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.0
41
Embodied Energy, MJ/kg 150
670
Embodied Water, L/kg 1120
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 20 to 27
44
Strength to Weight: Bending, points 28 to 33
39
Thermal Diffusivity, mm2/s 60 to 69
3.3
Thermal Shock Resistance, points 9.1 to 12
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.3 to 94.1
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 1.0 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.6
0 to 0.25
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 4.5 to 5.5
0
Titanium (Ti), % 0 to 0.25
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0 to 0.4