MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. EN 1.4567 Stainless Steel

357.0 aluminum belongs to the aluminum alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
22 to 51
Fatigue Strength, MPa 76
190 to 260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 200
390 to 490
Tensile Strength: Ultimate (UTS), MPa 350
550 to 780
Tensile Strength: Yield (Proof), MPa 300
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 620
1410
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 620
100 to 400
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
19 to 27
Strength to Weight: Bending, points 43
19 to 24
Thermal Diffusivity, mm2/s 64
3.0
Thermal Shock Resistance, points 17
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.050
3.0 to 4.0
Iron (Fe), % 0 to 0.15
63.3 to 71.5
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Nickel (Ni), % 0
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0