MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. 5056 Aluminum

Both 358.0 aluminum and 5056 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 3.5 to 6.0
4.9 to 31
Fatigue Strength, MPa 100 to 110
140 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Shear Strength, MPa 300 to 320
170 to 240
Tensile Strength: Ultimate (UTS), MPa 350 to 370
290 to 460
Tensile Strength: Yield (Proof), MPa 290 to 320
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 520
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
29
Electrical Conductivity: Equal Weight (Specific), % IACS 130
99

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.7
9.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1090
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
170 to 1220
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 37 to 39
30 to 48
Strength to Weight: Bending, points 42 to 44
36 to 50
Thermal Diffusivity, mm2/s 63
53
Thermal Shock Resistance, points 16 to 17
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.1 to 91.8
93 to 95.4
Beryllium (Be), % 0.1 to 0.3
0
Chromium (Cr), % 0 to 0.2
0.050 to 0.2
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.3
0 to 0.4
Magnesium (Mg), % 0.4 to 0.6
4.5 to 5.6
Manganese (Mn), % 0 to 0.2
0.050 to 0.2
Silicon (Si), % 7.6 to 8.6
0 to 0.3
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15