MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. ASTM A229 Spring Steel

358.0 aluminum belongs to the aluminum alloys classification, while ASTM A229 spring steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.5 to 6.0
14
Fatigue Strength, MPa 100 to 110
710 to 790
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Shear Strength, MPa 300 to 320
1020 to 1140
Tensile Strength: Ultimate (UTS), MPa 350 to 370
1690 to 1890
Tensile Strength: Yield (Proof), MPa 290 to 320
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 520
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
50
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
1.8
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1090
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
3260 to 4080
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 37 to 39
60 to 67
Strength to Weight: Bending, points 42 to 44
40 to 43
Thermal Diffusivity, mm2/s 63
14
Thermal Shock Resistance, points 16 to 17
54 to 60

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.1 to 91.8
0
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0.55 to 0.85
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.3
97.5 to 99
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0.3 to 1.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.6 to 8.6
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants