MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. EN 1.7710 Steel

358.0 aluminum belongs to the aluminum alloys classification, while EN 1.7710 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is EN 1.7710 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.5 to 6.0
6.8 to 11
Fatigue Strength, MPa 100 to 110
500 to 620
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 350 to 370
930 to 1070
Tensile Strength: Yield (Proof), MPa 290 to 320
800 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 520
260
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
3.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.7
2.2
Embodied Energy, MJ/kg 160
30
Embodied Water, L/kg 1090
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
1680 to 2970
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 37 to 39
33 to 38
Strength to Weight: Bending, points 42 to 44
27 to 30
Thermal Diffusivity, mm2/s 63
11
Thermal Shock Resistance, points 16 to 17
27 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.1 to 91.8
0
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0.12 to 0.18
Chromium (Cr), % 0 to 0.2
1.3 to 1.8
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.3
95.1 to 97
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0.6 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.6 to 8.6
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.2
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants