MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. Grade 37 Titanium

358.0 aluminum belongs to the aluminum alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 3.5 to 6.0
22
Fatigue Strength, MPa 100 to 110
170
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Shear Strength, MPa 300 to 320
240
Tensile Strength: Ultimate (UTS), MPa 350 to 370
390
Tensile Strength: Yield (Proof), MPa 290 to 320
250

Thermal Properties

Latent Heat of Fusion, J/g 520
420
Maximum Temperature: Mechanical, °C 170
310
Melting Completion (Liquidus), °C 600
1650
Melting Onset (Solidus), °C 560
1600
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 150
21
Thermal Expansion, µm/m-K 21
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 19
36
Density, g/cm3 2.6
4.5
Embodied Carbon, kg CO2/kg material 8.7
31
Embodied Energy, MJ/kg 160
500
Embodied Water, L/kg 1090
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
76
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
280
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
35
Strength to Weight: Axial, points 37 to 39
24
Strength to Weight: Bending, points 42 to 44
26
Thermal Diffusivity, mm2/s 63
8.4
Thermal Shock Resistance, points 16 to 17
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.1 to 91.8
1.0 to 2.0
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.3
0 to 0.3
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 7.6 to 8.6
0
Titanium (Ti), % 0.1 to 0.2
96.9 to 99
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.4