MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. 7108A Aluminum

Both 359.0 aluminum and 7108A aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 3.8 to 4.9
11 to 13
Fatigue Strength, MPa 100
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 220 to 230
210
Tensile Strength: Ultimate (UTS), MPa 340 to 350
350
Tensile Strength: Yield (Proof), MPa 250 to 280
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 530
380
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 570
520
Specific Heat Capacity, J/kg-K 910
870
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
36
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1090
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
610 to 640
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
47
Strength to Weight: Axial, points 37 to 38
33 to 34
Strength to Weight: Bending, points 42 to 43
38
Thermal Diffusivity, mm2/s 59
59
Thermal Shock Resistance, points 16 to 17
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.9 to 91
91.6 to 94.4
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 0 to 0.2
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.2
0 to 0.3
Magnesium (Mg), % 0.5 to 0.7
0.7 to 1.5
Manganese (Mn), % 0 to 0.1
0 to 0.050
Silicon (Si), % 8.5 to 9.5
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.030
Zinc (Zn), % 0 to 0.1
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0 to 0.15
0 to 0.15