MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. EN 1.4527 Stainless Steel

360.0 aluminum belongs to the aluminum alloys classification, while EN 1.4527 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is EN 1.4527 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
140
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 2.5
40
Fatigue Strength, MPa 140
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 300
480
Tensile Strength: Yield (Proof), MPa 170
190

Thermal Properties

Latent Heat of Fusion, J/g 530
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1410
Melting Onset (Solidus), °C 570
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 21
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 7.8
5.6
Embodied Energy, MJ/kg 140
78
Embodied Water, L/kg 1070
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
150
Resilience: Unit (Modulus of Resilience), kJ/m3 200
95
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 55
4.0
Thermal Shock Resistance, points 14
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0 to 0.6
3.0 to 4.0
Iron (Fe), % 0 to 2.0
37.4 to 48.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.5
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0