MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. EN 1.4923 Stainless Steel

360.0 aluminum belongs to the aluminum alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 2.5
12 to 21
Fatigue Strength, MPa 140
300 to 440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 190
540 to 590
Tensile Strength: Ultimate (UTS), MPa 300
870 to 980
Tensile Strength: Yield (Proof), MPa 170
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 530
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.9
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 1070
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 200
570 to 1580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 32
31 to 35
Strength to Weight: Bending, points 38
26 to 28
Thermal Diffusivity, mm2/s 55
6.5
Thermal Shock Resistance, points 14
30 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
83.5 to 87.1
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 0.5
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0