MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. N08135 Stainless Steel

360.0 aluminum belongs to the aluminum alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 2.5
46
Fatigue Strength, MPa 140
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Shear Strength, MPa 190
400
Tensile Strength: Ultimate (UTS), MPa 300
570
Tensile Strength: Yield (Proof), MPa 170
240

Thermal Properties

Latent Heat of Fusion, J/g 530
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 7.8
6.8
Embodied Energy, MJ/kg 140
94
Embodied Water, L/kg 1070
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
210
Resilience: Unit (Modulus of Resilience), kJ/m3 200
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 38
19
Thermal Shock Resistance, points 14
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 0 to 0.6
0 to 0.7
Iron (Fe), % 0 to 2.0
30.2 to 42.3
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.5
33 to 38
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 10
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Tungsten (W), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0