MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. 308.0 Aluminum

Both 364.0 aluminum and 308.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is 308.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
73
Elongation at Break, % 7.5
2.0
Fatigue Strength, MPa 120
89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 200
150
Tensile Strength: Ultimate (UTS), MPa 300
190
Tensile Strength: Yield (Proof), MPa 160
110

Thermal Properties

Latent Heat of Fusion, J/g 520
470
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 600
620
Melting Onset (Solidus), °C 560
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
37
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 8.0
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1080
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
3.3
Resilience: Unit (Modulus of Resilience), kJ/m3 180
83
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
47
Strength to Weight: Axial, points 31
18
Strength to Weight: Bending, points 38
25
Thermal Diffusivity, mm2/s 51
55
Thermal Shock Resistance, points 14
9.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.2 to 92
85.7 to 91
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
4.0 to 5.0
Iron (Fe), % 0 to 1.5
0 to 1.0
Magnesium (Mg), % 0.2 to 0.4
0 to 0.1
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 7.5 to 9.5
5.0 to 6.0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.15
0 to 1.0
Residuals, % 0 to 0.15
0 to 0.5