MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. ACI-ASTM CB30 Steel

364.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 300
500
Tensile Strength: Yield (Proof), MPa 160
230

Thermal Properties

Latent Heat of Fusion, J/g 520
290
Maximum Temperature: Mechanical, °C 190
940
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1080
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 180
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 31
18
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 51
5.6
Thermal Shock Resistance, points 14
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0.25 to 0.5
18 to 21
Copper (Cu), % 0 to 0.2
0 to 1.2
Iron (Fe), % 0 to 1.5
72.9 to 82
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.15
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0