MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. AISI 347 Stainless Steel

364.0 aluminum belongs to the aluminum alloys classification, while AISI 347 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is AISI 347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 7.5
34 to 46
Fatigue Strength, MPa 120
220 to 270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 200
430 to 460
Tensile Strength: Ultimate (UTS), MPa 300
610 to 690
Tensile Strength: Yield (Proof), MPa 160
240 to 350

Thermal Properties

Latent Heat of Fusion, J/g 520
290
Maximum Temperature: Mechanical, °C 190
870
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.6
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1080
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
190 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 180
150 to 310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 31
22 to 25
Strength to Weight: Bending, points 38
20 to 22
Thermal Diffusivity, mm2/s 51
4.3
Thermal Shock Resistance, points 14
13 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.25 to 0.5
17 to 19
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
64.1 to 74
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0 to 0.15
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 7.5 to 9.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0