MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. EN AC-46300 Aluminum

Both 364.0 aluminum and EN AC-46300 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
73
Elongation at Break, % 7.5
1.1
Fatigue Strength, MPa 120
79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 300
200
Tensile Strength: Yield (Proof), MPa 160
110

Thermal Properties

Latent Heat of Fusion, J/g 520
490
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 560
530
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
27
Electrical Conductivity: Equal Weight (Specific), % IACS 100
84

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 8.0
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1080
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 180
89
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
49
Strength to Weight: Axial, points 31
20
Strength to Weight: Bending, points 38
27
Thermal Diffusivity, mm2/s 51
47
Thermal Shock Resistance, points 14
9.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.2 to 92
84 to 90
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
3.0 to 4.0
Iron (Fe), % 0 to 1.5
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.2 to 0.4
0.3 to 0.6
Manganese (Mn), % 0 to 0.1
0.2 to 0.65
Nickel (Ni), % 0 to 0.15
0 to 0.3
Silicon (Si), % 7.5 to 9.5
6.5 to 8.0
Tin (Sn), % 0 to 0.15
0 to 0.1
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.15
0 to 0.65
Residuals, % 0 to 0.15
0 to 0.55