MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. Nickel 201

364.0 aluminum belongs to the aluminum alloys classification, while nickel 201 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is nickel 201.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
180
Elongation at Break, % 7.5
4.5 to 45
Fatigue Strength, MPa 120
42 to 210
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
70
Shear Strength, MPa 200
270 to 380
Tensile Strength: Ultimate (UTS), MPa 300
390 to 660
Tensile Strength: Yield (Proof), MPa 160
80 to 510

Thermal Properties

Latent Heat of Fusion, J/g 520
290
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1440
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 120
78
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
19
Electrical Conductivity: Equal Weight (Specific), % IACS 100
19

Otherwise Unclassified Properties

Base Metal Price, % relative 11
65
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.0
11
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
25 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
17 to 720
Stiffness to Weight: Axial, points 15
11
Stiffness to Weight: Bending, points 53
21
Strength to Weight: Axial, points 31
12 to 20
Strength to Weight: Bending, points 38
13 to 19
Thermal Diffusivity, mm2/s 51
20
Thermal Shock Resistance, points 14
11 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 1.5
0 to 0.4
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0 to 0.15
99 to 100
Silicon (Si), % 7.5 to 9.5
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0