MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. Nickel 686

364.0 aluminum belongs to the aluminum alloys classification, while nickel 686 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 7.5
51
Fatigue Strength, MPa 120
410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
77
Shear Strength, MPa 200
560
Tensile Strength: Ultimate (UTS), MPa 300
780
Tensile Strength: Yield (Proof), MPa 160
350

Thermal Properties

Latent Heat of Fusion, J/g 520
320
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 600
1380
Melting Onset (Solidus), °C 560
1340
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 120
9.8
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
70
Density, g/cm3 2.6
9.0
Embodied Carbon, kg CO2/kg material 8.0
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1080
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
320
Resilience: Unit (Modulus of Resilience), kJ/m3 180
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
22
Strength to Weight: Axial, points 31
24
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 51
2.6
Thermal Shock Resistance, points 14
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.25 to 0.5
19 to 23
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
0 to 5.0
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0 to 0.15
49.5 to 63
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0