MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. 6013 Aluminum

Both 380.0 aluminum and 6013 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
69
Elongation at Break, % 3.0
3.4 to 22
Fatigue Strength, MPa 140
98 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Shear Strength, MPa 190
190 to 240
Tensile Strength: Ultimate (UTS), MPa 320
310 to 410
Tensile Strength: Yield (Proof), MPa 160
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 510
410
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 590
650
Melting Onset (Solidus), °C 540
580
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 100
150
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
38
Electrical Conductivity: Equal Weight (Specific), % IACS 83
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 7.5
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 170
200 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
49
Strength to Weight: Axial, points 31
31 to 41
Strength to Weight: Bending, points 36
37 to 44
Thermal Diffusivity, mm2/s 40
60
Thermal Shock Resistance, points 14
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.6 to 89.5
94.8 to 97.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 3.0 to 4.0
0.6 to 1.1
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0 to 0.1
0.8 to 1.2
Manganese (Mn), % 0 to 0.5
0.2 to 0.8
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 7.5 to 9.5
0.6 to 1.0
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 3.0
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.15