MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. A384.0 Aluminum

Both 380.0 aluminum and A384.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
74
Elongation at Break, % 3.0
2.5
Fatigue Strength, MPa 140
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
28
Shear Strength, MPa 190
200
Tensile Strength: Ultimate (UTS), MPa 320
330
Tensile Strength: Yield (Proof), MPa 160
170

Thermal Properties

Latent Heat of Fusion, J/g 510
550
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
610
Melting Onset (Solidus), °C 540
510
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 100
96
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
23
Electrical Conductivity: Equal Weight (Specific), % IACS 83
73

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 7.5
7.5
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1040
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 170
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 31
32
Strength to Weight: Bending, points 36
38
Thermal Diffusivity, mm2/s 40
39
Thermal Shock Resistance, points 14
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.6 to 89.5
79.3 to 86.5
Copper (Cu), % 3.0 to 4.0
3.0 to 4.5
Iron (Fe), % 0 to 2.0
0 to 1.3
Magnesium (Mg), % 0 to 0.1
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 0.5
Silicon (Si), % 7.5 to 9.5
10.5 to 12
Tin (Sn), % 0 to 0.35
0 to 0.35
Zinc (Zn), % 0 to 3.0
0 to 1.0
Residuals, % 0 to 0.5
0 to 0.5