MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. SAE-AISI 9254 Steel

380.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 9254 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is SAE-AISI 9254 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
200
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 3.0
20
Fatigue Strength, MPa 140
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Shear Strength, MPa 190
410
Tensile Strength: Ultimate (UTS), MPa 320
660
Tensile Strength: Yield (Proof), MPa 160
410

Thermal Properties

Latent Heat of Fusion, J/g 510
270
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 100
46
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.2
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.5
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 1040
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 31
24
Strength to Weight: Bending, points 36
22
Thermal Diffusivity, mm2/s 40
12
Thermal Shock Resistance, points 14
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0.51 to 0.59
Chromium (Cr), % 0
0.6 to 0.8
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 2.0
96.1 to 97.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.6 to 0.8
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 7.5 to 9.5
1.2 to 1.6
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0